Fall 2015

Lecturer: Dr. Paullin

- (1) Consider the graph shown on the right.
 - (a) List **v**, **e**, **c**, and **f** for this graph.

2,2,2,3,3,4 (c) What is the degree of each face?

(3) For each graph above, find the number of vertices, edges and faces.

	Graph a	Graph b	Graph c
Vertices v	8	5	6
$\mathbf{Edges}\;e$	12	6	10
Faces f	(p	3	6

(4) From the information in your table above, Fill in the blank to determine the result of Euler's formula.

Theorem (Euler's Formula). Take any connected planar graph drawn with no intersecting edges. Let v be the number of vertices in the graph, e be the number of edges in the graph, and f be the number of faces in the graph. Then v-e+f=

$$\ddot{\text{v-e+f}} = 2$$